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SUMMARY 

A new method for the computation of two-dimensional critical flows over spillways is presented. The premise of 
the method is that at a critical value of the discharge coefficient that free boundary has no upstream waves. For the 
chosen spillway geometry without a toe section this requirement is equivalent to negative curvature of the free 
boundary. The method consists of two levels: at the inner level the corresponding free boundary value problem is 
solved for a fixed value of Q and at the outer level a critical value of Q is sought by minimization of the oscillation 
of the free boundary. An invaluable part of the method is the sensitivity anlaysis of the finite element stiffness 
mamx. The correctness of the numerical results is proved by scrutinizing the convergence rate by mesh 
refinement. Good agreement of the computed results with experimental data is achieved. 
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INTRODUCTION 

Concomitant with the growth of computational facilities and the ready availability of powerful 
computers is the progress made in computational fluid mechanics. A significant aspect of this progress 
is that problems previously solved using relatively coarse discretizations can now be scrutinized using 
much h e r  discretizations. In this paper the numerical computation of the critical flow over a two- 
dimensional spillway is subjected to such scrutiny. 

The computation of critical flow amounts to computing the steady flow over a spillway such that the 
approaching flow is subcritical. Since critical flow deals with the transition from subcritical upstream 
flow to supercritical downstream flow, the problem can be satisfactorily modelled within potential 
theory. The problem is classified as a free surface problem and is recognized as being rather difficult, 
because not only is the position of the free surface unknown in advance but also a value of the critical 
discharge coefficient has to be found as part of the solution. Akin to the problem of critical flow over a 
spillway is the determination of the critical flow over a weir or under a sluice gate. However, according 
to our computational experience and also according to other autors,1’2 the spillway problem is more 
difficult and it was thus chosen as a representative example of critical flow. 

Usually the numerical computation of the critical discharge coefficient is pursued via a two-level 
iteration algorithm. At the interior level the free boundary problem is solved for some assumed value of 
the discharge coefficient Q, while at the exterior level a new value of Q closer to the critical value is 
sought. The criterion of whether a certain value of Q is closer to the critical value is set in terms of the 
geometrical properties of the free boundary. In particular, it is required that the inlet depth of the free 
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boundary coincides with the subcritical depth. This requirement is usually supplemented with the 
condition that the free boundary has no waves upstream of the spillway crest. However, in our 
numerical computation we found that for a sufficiently long upstream region the inlet depth always 
coincides with the subcritical depth. The upstream region of spillway problems is usually rather long 
and thus in our numerical calculation the no-wave condition was chosen as the defining property of the 
critical discharge. In the case of a relatively short upstream region, as in References 3-5 where the 
critical flow over a weir is computed, the matching condition for the inlet depth gives some definite 
value of Q. However, what is lacking in this approach is a rigorous analysis of how the length of the 
upstream region affects the computation of the critical value of Q. We believe that such an analysis 
would reveal that the matching criterion is insufficient. The notion that the free boundary 
corresponding to the critical value of Q should have no waves has been recognized for quite a long 
time. At first6*' the notion was expressed vaguely that the critical value of Q is the value which gives 
the smoothest profile of the free boundary. Of course, this requirement is imprecise, since for a chosen 
discretization all computed free boundaries have the same degree of smoothness. More precise is 
Aitchison' with his phase-traking method. In this paper we introduce the more concise requirement 
that the upstream part of the fiee boundary has negative curvature. This restriction to the upstream part 
can be extended to the whole free boundary provided that the outlet is placed well before the toe where 
the curvature changes sign. 

One of the most difficult aspects of the numerical calculation of critical flows by two-level 
algorithms is the fact that a solution to the inner iteration exists only for certain values of Q. According 
to our computational experience, for a relatively coarse dwretization of about 30 free nodal points the 
convergence radius of the inner iteration with respect to Q is sufficiently large to begin with the 
empirical value of the critical discharge coefficient. With increasing refinement the convergence radius 
of Q shrinks and for a rather fine discretization of about 200 free nodal points the initial value of Q has 
to be given within an accuracy of An important observation is that for coarse discretizations the 
negative curvature condition in its discrete form is satisfied for quite a broad range of Q. With 
increasing refinement the above set of acceptable values of Q shrinks and becomes void. Therefore the 
critical value of Q for a discrete problem of flow over a spillway is actually defined as the value at 
which the negative curvature condition in its discrete form is least violated. In this way the outer 
iteration becomes a minimization algorithm with violation of the negative curvature condition as the 
objective function. The correctness of this approach is manifested by the fact that during mesh 
refinement it provides the inner iteration with convergent values of Q. The fact that for a coarse 
discretization multiple solutions exist explains why Finn and Varoglu's' method works within one 
iteration level. In their method an additional equatin resulting fiom the variation in kinetic energy with 
respect to Q is introduced into the inner free boundary iteration level and thus the position of the free 
boundary and the value of Q are computed simultaneously. However, we believe (see also the 
discussion in References 3 and 7) that their approach gives meaningful results only because of the 
coarse discretization, which as we now h o w  allows quite a broad range of acceptable solutions. 

STATEMENT OF THE PROBLEM 

To allow comparison with previously published  result^'"^ and experimental data," a sharp-crested 
WES-standard spillway without piers was chosen. With reference to Figure 1, AB = : Tbed is the flat 
bed of length L 1 ,  BC U CD U DTE = : I-,,,, is the spillway crest of length Ls, EF = : Tout is the outlet, 
FG = : T k  is the free boundary and GA = : Tin is the inlet. The spillway crest consists of the vertical 
upstream face BC, two circular segments between C and D with radii rl and r2 and a curve DT given in 
the local crest co-ordinate system (5 ,  q )  as 5'''' = 2@ 85q, where Hd is the design head excluding the 
approach velocity head. The crest is prolonged by a straight line TE tangent to the curve DT. Here 
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point T is chosen such that TE has in inclinatin of 45" in the local co-ordmate system (t, q). 
Introduction of the point of tangency is optional and is given here only to show some influence of the 
shape of the crest upon the flow. 

The problem is modelled within potential theory. This means that the stagnation level is constant. In 
Figure 1 the stagnation level is given by Ho + He, where Ho is the height of the crest and He is the total 
energy level on the crest including the velocity of the approaching fluid. In this paper it is assumed that 
the stagnation level is given while the discharge coefficient Q is unknown. As is well known, the dual 
problem where Q is given and the stagnation level has to be found is very similar and can be analysed 
with almost the same approach. The formula which relates the dimensional flux Qd per unit breadth 
and He is 

where C, is the empirical discharge coefficient," which in the particular case of Ho 2 1-33Hd equals 
4.03. 

Along the free boundary the Bernoulli equation 

; V2 + gY = g(He + H,) (2) 

applies. Here V is the fluid speed along the boundary, Y is the free boundary elevation and g is the 
gravitational acceleration, which acts in the direction of the negative y-axis. Introducing dimensionless 
quantities using the mean x-component Vo of the inlet velocity for the characteristic speed and kfd for 
the characteristic length, equation (2) is rewritten as 

2 + --o, L - he - h,) = 0, 
Fr (3) 

where capital letters in (2) are replaced by corresponding lowercase letters representing dimensionless 
quantities. Here Fr = vt/gHd is the Froude number. Expressing the dimensionless flux Q per unit 
breadth as Q = Qd/J(gHd) and noting that Qd = VoY,, where Y, is the inlet depth, we have 
Fr = @ /$ . In a numerical computation within a finite computational domain Cl the requirement that 
the approaching flow is subcritical is replaced by the conditions that the d e t  depth yl coincides with 
the subcritical depth and that the upstream part of rfree does not have waves. To this end L I  is taken 
sufficiently large and the assumption of a uniform x-component of the inlet velocity is made. In 
computation of the critical flow the location of the outlet is of less importance and thus rout in our 
computations is placed quite arbitrarily at a distance L2 = 1.6 15Hd downstream from the upstream face 
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BC of the crest. Since the velocity distribution along rout is not known, it is assumed that rout is the 
equipotential line. Note that this requires that rout is orthogonal to both T h e  and rcrest. 

For a given value of Q the subcritical depth &(Q) is defined as the largest root of the equation 

@ + 2S3 - 2S2(he + h,) = 0, (4) 

which is just the Bernoulli equation of uniform flow over a flat bed with a given stagnation level 
he + h,. Introducing (4)  into the definition of the Froude number and using yl =&((I), it follows from 
(3) that 

To summarize, the continuum potential model of the critical flow over a spillway amounts to solving 
the following problem: find the velocity potential h c t i o n  cp, the positions of rfrce and rout and the 
discharge coefficient Q such that 

rfrce has no upstream waves, (6) 

YG - &(Q) = 0. (12) 

Here the subscript G denotes that YG is the y-co-ordinate of the inlet point G. Note that conditions (8) 
and (1 0) imply that rout is orthogonal to both rfrce and rclest and thus the position of Tout, owing to the 
unknown position of rher is also not known in advance. Usually rout is approximated by a straight 
line orthogonal to rcrest. Although this simplifies the code significantly, we require in this paper that 
Tout is orthogonal to rhe, since this makes an important difference in the minimization of the violation 
of the negative curvature condition. Pausing for a moment, we note that the discretization of problem 
(6H12) results in an ill-conditioned problem. Indeed, for a sufficiently long upstream region the no- 
wave condition (6) implies that the inlet rin is nearly orthogonal to r&. This together with (9) implies 
that at the inlet point G, v !=z 1 and thus (1 1) and (I  2) are almost identical equations. Therefore in the 
numerical calculation equation (1 2) is simply omitted. The above argument shows that the numerical 
solution of (6H11) also satisfies (12) to high accuracy. 

DISCRETIZATION OF THE PROBLEM 

The problem is discretized using the finite element method. Since (1 1 )  involves values of the gradient 
of cp, the isoparameteric Hermite-Zienkiewicz element is chosen. Let us denote by R, the finite 
element discretization of R and by u E R' a vector of degrees of freedom corresponding to the finite 
element discretization (ph of cp. Since from now on all discussion refers to a h ,  the same letters as for R 
are used for the characteristic points and boundary segments of Rh. The finite element mesh is 
determined by the conformal mapping from the reference domain In, onto Rh. For R, is chosen a 
spillway shape domain where the free boundary is replaced by a spline consisting of two segments. The 
first segment is a straight line parallel to the x-axis and extends from the inlet point G to point D' 
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placed above the highest point of the crest, while the second segment is the interpolating parabola 
through points D’ and F with a smooth fit at D’. Points F and G are determined by using the empirical 
value of Q and assuming that the flow is uniform and subcritical/supercritical at the inlet/outlet. Here 
the outlet is just a straight line orthogonal to the crest at point E. Actually, to get a better approximation 
of rfree, point D’ is lowered slightly. In this way the determined boundary FG of Q also serves as an 
initial approximation of the free boundary of ah .  The conformal mapping from S& onto nh is 
approximated by using linear triangular elements. The finite element stiffness matrix of this 
approximation is of size approximately one-ninth of the flow finite stiffness matrix and needs to be 
computed only at the initialization step. The reference finite element mesh on S& is determined by five 
parameters n,, i = 1, . . . , 5 ;  see Figure 2. Here nl is the number of y-layers above the crest, nl + n2 is 
the number ofy-layers of the upstream region, n3 is the number of x-layers of the upstream region, n4 is 
the number of x-layers of the crest between C and D and n5 is the number of x-layers of the crest 
between D and E. Note in Figure 2 that the layers along rke and rmst are further refined into 
sublayers. Mesh refinement is also carried out in the vicinity of point C. The spacing between the x-co- 
ordinates of the finite element nodes in the upstream region is uniform, while the mesh spacing in the 
y-direction between B and C behaves as (yc -Y)’.~.  Here yc is the y-co-ordinate of point C. A 
complete list of all meshes used in the paper is given in Table I, there N, is the number of finite 
elements and s is the number of finite element nodes along I-&. 

As already noted, rout is required to be orthogonal to both I‘frte and rcrcst. The simplest way to 
achieve this is to approximate rout by a parabola. This approximation is uniquely determined by 
interpolation through point F and the orthogonality condition between rfrec and rcrcst. Note that this 
approximation also affects the position of point E. The co-ordinates of the finite element nodes along 
rfrn are not known in advance and are thus subjected to certain displacements during the free 
boundary iteration. Displacements of all upstream free boundary nodes up to point D’ are allowed only 
in the y-direction, while the free boundary nodes along the upper nappe are variable in the directions of 
the normals to the lower nappe. In this way, with each free boundary node is associated one unknown 
parameter and together they constitute the parameter set of the free boundary problem. Using the 
isoparametric Hennite-Zienkiewicz element, rke is specified not only by the positions of the 
boundary nodes but also by the directional cosines of the tangential derivatives of the free 

Although it is possible to include directional cosines in the parameter set, we proceed 
with the simplification that directional cosines are determined by interpolation through the free 
boundary nodes. As we shall see, it is preferable to have a local interpolation in the sense that the 
tangential derivatives at the finite element node Pi is not affected by the positions of nodes P, far away 

1’ 

A B 

F i m  2. Refmnce spillway shape domain Q. Mesh paramem nl = 2, n2 = 4, n3 = 10, n4 = 1 and ns = 7. The mesh Consists Of 

302 elements and has 37 boundary nodes along Tmt 
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Table I. List of mesh definitions. A mesh with parameters n l ,  n2, n3, n4 and n5 is referred to as mesh M,,n2n,n,ns 

M2405105 
M24 101 07 
M24201 10 
M2430110 
M2430210 
M28302 10 
h830210 
h830220 
pcLbs40220 
&a40220 
M8840220 
M8840320 
M6860320 
M6880320 
M7880320 
ME880320 
M9880320 
M10880320 
M10880420 
M101280420 

2 
2 
2 
2 
2 
2 
4 
4 
4 
6 
8 
8 
6 
6 
7 
8 
9 

10 
10 
10 

4 
4 
4 
4 
4 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

12 

5 
10 
20 
30 
30 
30 
30 
30 
40 
40 
40 
40 
60 
80 
80 
80 
80 
80 
80 
80 

1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
4 
4 

5 
7 
0 

10 
10 
10 
10 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

189 
302 
514 
684 
698 
935 

1106 
1286 
1576 
1824 
2072 
2098 
2506 
3166 
3372 
3578 
3784 
3990 
4029 
4660 

23 
37 
63 
83 
85 
85 
85 

105 
125 
125 
125 
127 
167 
207 
207 
207 
207 
207 
209 
209 

from Pi. To this end the tangential derivaties at Pi = (xi, yi) is determined by differentiation of x and y 
polynomial interpolation through nodes (xi.- xi, xi+] } and (yi-], yi, yi+ I } respectively. Here the 
polygonal arc length between nodes Pi-l, Pi and Pi+] is chosen for the independent variable. At the 
end point F the interpolation is through nodes PSp2, Ps-l and P,=F and hence, owing to the 
orthogonality condition between rk and rout, the position of rout depends upon the variation in these 
nodes. The x-co-ordinates of the nodes along rout are determined by the a f i e  mapping between the 
image of the projection of the outlet boundary off& onto the x-axis and the image of the projection of 
rout onto the x-axis of the computational domain a h .  The inlet point G is common to The and Tin and 
is thus variable. A simple approach wherein along rin only G is variable and all other nodes are fixed 
may, in the case of a very fine discretization relative to the displacement of G, result in too distorted 
elements. Therefore all nodes along rin are variable and are moved by scaling their y-co-ordinates by 
the displacement of G. The finite element nodes along rw and rcresf, except the end point E, are fmed 
and have the same co-ordinates as their corresponding nodes on the boundary of Q. In this way the 
boundary data of the conformal mapping fiom SZ, onto Q, are uniquely determined by Tmc and thus 
the positions of the finite element nodes of Rh depend only upon the cosrdinates of the nodes along 
rk. This property is very important for the fiee boundary iteration since it eliminates the dependence 
of the solution upon the way the iteration evolves. 

By the above approximation rmc is a piecewise smooth curve with global regularity of class C'. At 
the h e  nodal points the curvature is not defined and thus it is natural to replace the negative curvature 
condition by the requirement that the upstream part of r h  is a concave curve. Noting that the 
positions of the fiee boundary nodes are of primal interest, the concavity condition is further relaxed to 
the requirement that 

+ - +  

(Pipi+, x P,-,P,) x k 2 0. 
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Here the subscript i runs from the inlet to the outler and is the unit positively oriented vector 
orthogonal to the x- and y-axes. Since our analysis does not include the toe section, the index i is 
allowed to run from i = 2 to s - 1, where s is the number of free boundary nodes. Accumulating 
changes of direction of s, we define 

where; is the unit basis vector of the x-axis. Note that Oo(Th) measures the oscillation of T h .  Note 
also that the s u m  in (14) is just a discrete form of 

where K is the curvature and do is the arc length element. For a sufficiently long upstream region it is 
clear the yl 2 y2 and thus, if (13) is satisfied for all i E (2,. . . , s - l}, it follows that for 

we have O ( T h )  = 0. Moreover, any violation of (1 3) obviously results in O(Th) =- 0 and therefore 
O ( T h )  measures the violation of the discrete negative condition. Since for certain mesh 
discretizations T h  is not a concave curve, O ( r k ) = O  is too stiff a condition to be introduced 
directly into the numerical calculation and thus instead the minimization of Q(Th) is attempted. To 
summarize, with the continuum problem ( 6 x 1  2) is associated the following optimization problem: for 
a given finite element discretization of Rh and mapping from Q onto Rh find Qc such that 

Wk(QA) = T(W,dQ))}t (17) 

where r,(Q) is the free boundary of the discrete free boundary problem (7H11) with a fixed value Q 
of the discharge coefficient. In the following, problem (17) is referred to as the Q-problem. 

An alternative to minimization of O(Th) is the minimization of Oo(Tmc). There is no significant 
difference between the two alternatives. However, for concave rhe(Qc) the target value of O(rhe) is 
known and thus O ( T h )  is preferred for the objective function. 

SOLUTION OF THE DISCRETE FREE BOUNDARY PROBLEM 

In this section the discrete solution to the free boundary problem (7Hll) for a fixed value of Q is 
sought. Since a solution exists only for certain values of Q, the solution algorithm has to be reliable 
with a well-tested convergence behaviour. Our previous435 computational experience with the variable 
domain method was encouraging and thus this method is implemented in the present paper. 

Let us denote by h E 02" a vector corresponding to the parameter set. The co-ordinates of h are 
denoted by hi and are ordered in such a way that hi runs from the inlet to the outlet. With this notation 
the dependence of f2h upon rh is denoted by R(h) and the free boundary problem ( 7 x 1  1) is referred 
to as the h-problem. For a given domain R(h) a discretization of (7H10) is just a discretization of the 
flow problem. Denoting by K(h) the finite element stiffness matrix and by b(hl) the load vector, the 
linear system K(h)u = b(h1) is obtained for the unknown vector u. Here the notations K(h) and b(h1) 
indicate that K(h) and b(hl) depend upon h and hl .  The dependence of K(h) is obvious, while the 
dependence of the load vector follows from the variable position of the finite element nodes along Tin. 
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It should be noted that b(hl) does not depend upon rout. Discretization of the Bernoulli condition (1 1) 
can be performed in several ways. Since the Hermite-Zienkiewicz element is implemented, the 
simplest way to impose (1 1) is by collocation at the finite element nodes along The.  However, it was 
found that in this case the sensitivity of the h-problem to the accuracy of the value of Q is very high. 
For values Q # Qc this sensitivity is manifested by oscillation of the upstream part of the free boundary. 
Similar oscillations of rhe were observed and reported in Reference 2 as the uncertain region. The 
wavelength of the oscillation is proportional to 2Ll /n3  while the amplitude is proportional to 

1 Q - Qc I / n l .  When such oscillation occurs and the amplitude exceeds a critical value, the variable 
method is prone to failure. However, we report that in the computation of the critical flow over a 
with a short upstream region such oscillations are not present and hence the collocation approach is 
perfectly acceptable. 

In this paper the Bernoulli condition (1 1) is discretized by using the weighted residual method. We 
note that in the case of the weighted residual method the sensitivity of the h-problem to the accuracy of 
Q is of lesser degree. Denoting by {wj: j =  1, 2 , .  . . ,s}  a suitably chosen collection of weighting 
functions, equation (1 1) is discretized as 

j E { 1, 2,  . . . , s}. For the weighting functions, linear shape functions are chosen. In particular, w, is a 
piecewise linear interpolating function of the arc length such that wj has support between nodes Pj-l 
and Pj+' and such that w,{Pk) = a jk .  Denoting by c E R" a vector whose jth component equals (18), 
discretization of (11) results in a non-linear system c(u, h)=O. Here the notation indicates that c 
depends non-linearly on u and h. Summing up, discretization of the free boundary value problem 
(7H11) requires us to solve the non-linear system 

Noting that u appears linearly in the first set of equations (1 9), u is eliminated and thus a solution to the 
non-linear system 

f(h) = c(K-'(h)b(h,), h) = 0 (20)  

is sought. The solution is attempted by the Newton-Raphson method. Denoting by h@) the vector h at 
the kth iteration step, h(&') is determined by 

(21) h(k+') = h(k) + Ah(k) = h(k) - [Df(h(k))]-'f(h(k)), 

where Df(h@') is the Jacobian of f computed at h('). The main computational task lies in the 
computation of the Jacobian. Using the chain rule, it follows that 

where &/&I E Y(R', R") % R" ', h / a h  E Iw' ", &/ah E R" " and aK(h)/ah E Y(R', Iw' 7. 
Here 9 ( X ,  Y) denotes the space of all linear transformations from a vector space X to a vector space 2: 

The computation of the Jacobian is organized as follows. 
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Step 1. 
Step 2. 
Step 3.i. 

step 4.i. 

Perform factorization of K(h) and solve K(h)u = b(hl). 
Compute &/h, &/ah and store &/ah in Df(h). For each i E { 1,. . . , s} do: 
Compute - aK(h)/ah,, multiply the result by u and for i = 1 add to this result ab(h)/ahl. 
Store the result in qi. 
Solve K(h)p,=qi and add the result to the ith column of Df(h). 

We now discuss how to compute individual parts of the Jacobian. Since cj depends only upon those 
degrees of freedom which are associated with elements which have nodes along the support of wj, 
&/h is a rather sparse matrix. Components of c are readily expressed as the combination of terms 

where kk are the linear finite basis functions of the arc Pipj+, . Therefore it suffices to consider only the 
computations of &!,k/h. Let us denote by a, the element with its side along PjPj+]. With this element 
is associated a vector of the local finite element basis functions, N = “,I,= , .,9, and a vector of the 
local degrees of freedom, U, = [U1],= , .,9. Since the Hennite-Zienkiewicz element is used, the local 
degrees of freedom are not the same as the global ones but are instead expressed by the relation” 
U, = H I ~ U ~ ~ ,  Here and also in the sequel the summation convection over repeated indices applies; 
e: { 1, . . . ,9} -j N is the transformation from the local enumeration into the global one and HIJ are the 
elements of the matrix 

H e =  0 H3 0 E R9x9, [HOI J 
where 0 E R3 and 

Here E = [(,,,,I E R2 is the matrix of the parametrs of the isoparametric transformation from the 
master Hermite-Zienkiewicz element onto Q. The uppercase indices refer to the local enumeration of 
the nodes and are arranged in such a way that the global degrees of freedom with indices e(3k - 2), 
e(3k - 1) and e(3k), k= 1, 2, 3, correspond to the h c t i o n  value and values of x- and y-partial 
derivatives. The subscript m E { 1, 2 )  refers to the x- and y-co-ordinates of the ordered pair (.,,,. Note 
that (..3k-2, k= 1 ,  2, 3, are co-ordinates of the vertices of a. It follows now that for the global index 
I = e(L)  we have 

and thus 

Owing to the local dependence of Cjk upon hi, it suffices to discuss only the computation of kjk/ahi for 
iE {maxG - 1, l } , j , j +  1, min{s,j+2}}. Note that the bandwidth of &/ah is five. Using the chain 
rule, we have 
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The last term on the right is given by the known dependence of the parameters of the isoparametric 
upon hi. ~n the computation of acjk/atmN the partial derivatives */atmN, aivcp,,i2/atmN and adc/atmN 
are encountered. The computation of */at;,N is trivial, since y = 52NNN and thus */atmN = 6,2”. To 
compute aivq,i2/atmN, we use the formu~a’~  

where the subscripts I, rn E { 1, 2) after the semicolon denote partial differentiation with respect to x 
and y. Using (29), it follows that 

where aH,/at,,,, E { 0, 1 is readily determined using (24) and (25). In the computation of adc/a<,N 

we first note that the element side between Pi and is given by 

where f in  are the master element basis fimctions and &(t) are the side parameter A@ctions. For 
example, in the case where the side PjPj+l is the image of the master element side P,P,, we have 

= 0 and i ( t )  = 1 - t. The arc length element is do = ,/(q + 2)dr and 

The partial differentiation of the load vector is computed element by element. Let us denote by one 
of the elements which has a side along Tin and by be E R9 the contribution of Re to b(hl). Applying the 
same technique as above, the computation of abe/ahl follows by noting that be = HT6, where b E R9 
has components 

However, using the fact that the side of 
follows that 

along rin is a straight line in the direction of the y-axis, it 

where yl is the y-co-ordinate of point G and 6(Z) E (0, 1 ,  2). Note that in the derivation of (34) the 
scaling relation between the displacement of point G and the y-co-ordinates of the nodes along ri,, 
is used. The particular form of S(Z) depends upon the enumeration of the nodes of Q. For example, 
if in the local enumeration of Re the vertices P3 and el lie along Tin, then 
42)  = d(4) = S ( 5 )  = 6(6) = 4 8 )  = 0, 41)  = S(7) = 1 and 4 3 )  = 6(9) = 2. Formula (34) of course also 
follows directly from (33) by noting that only the length of the element side depends upon hl .  

We now turn to the computation of aK(b)/ahi. It is clear that K(h) depends upon h owing to the 
variation in the finite element nodes. However, since the Hennite-Zienkiewicz element is used and the 
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boundary segment rout where the Dirichlet boundary contion is imposed is variable, K(h) also depends 
upon the variation in the boundary conditions. Indeed, for each node along rout a constraint 

a(Ph a(Ph - f ’  + - t2  = 0 
a x b  (35) 

is introduced by the Lagrange multiplier method” into the finite element stifhess matrix. Here 
i = ( t l  , t2 )  is the tangent to rout at the finite element node. Since 7 depends upon rout and thus upon 
h,-2, hs.-l and h,, the variation in the constraints (35) with respect to h has to be included in the 
computation of aK(h)/ahi. For a known dependence of rout upon T h  this can be done in a 
straightforward way. 

The computation of aK(h)/ah, owing to the variation in the mesh, is performed element by element. 
The contribution of the element C& to K(h) is HTKH,, where K, E R9x9 has elements 

Ke,lJ = Nl;lNJ;ldne~ (36) 

and thus the contribution of Q, to aK(h)/ah, is 

A term in (37) not yet encountered is aKJat, ,  which is computed using (29) and the known fact that 
the partial differentiation of the volume element dQ is given byL4 

-- me - me”;,. 
at, 

Therefore, in order to compute aK(h)/ah, the partial derivatives HT(aKJat,,)H, for all elements C& 
have to be known. Actually, owing to the multiplication of aK(h)/ahi by u, it suffices to know 
Hf(aKJatd)Ue. Since for each i E { 1,. . . ,s} all these element contributions to [aK(h)/ah,]u have to 
be known simultaneously, all H~(13Kea~,)Ue are computed immediately after Step 1 and are stored as 
data of size 18 x 9 x N. floating point numbers. Here Ne is the number of finite elements of ah. The 
computational cost of Hf(aKe/ayd)Ue is slightly higher than the cost of assembling K, and thus the 
cost of computing all required element derivatives is approximately of the same order as the cost of 
assembling the stiffness matrix. 

Estimating the computational cost, we note that the total cost of Steps 4.i, i = 1, . . . , s, is rather high. 
Indeed, denoting by d the average half-bandwidth of K(h), the computational cost of Step 4 is O(rds) 
while the cost of Step 1 is qrd + rd). Using the skyline storage schema and y-directed enumeration of 
the nodes, a typical ratio s:d is between two and four. For example, for the mesh with parameters 
nl = 10, n2 = 8, n3 =80, n4=3 and n5 =20 we have Ne =3990, r=6549, s=207 and d =  58 and thus 
the cost of Step 4 is higher by a factor of approximately 3.6 than that of Step 1. 

Taking into account also the cost of computing atmN/ahi, estimation of the cost of computation of 
the Jacobian Df(h) shows that the cost of each Newton-Raphson iteration step is comparable with the 
cost of solving four flow problems on a fixed domain. Therefore, in order to avoid expensive 
computations of the Jacobian, it seems natural to try Broyden’s method’6*’7 instead of the Newton- 
Raphson method. Using Broyden’s method, the problem remains of how to get the initial 
approximation to the Jacobian. Sometimes Broyden’s method works if it begins with the appropriate 
scaled identity matrix. However, according to our numerical experience, this approach requires a fairly 
good initial guess of the free boundary and despite this quite often results in very slow convergence. To 
overcome these difficulties, the initial approximation to the Jacobian is computed as if only finite 
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elements along rin U r h  U rout are variable and all other interior elements are fixed. Although this 
simplification reduces the computational cost by about 25% and also reduces the storage requirement, 
it does not notably simplify the code. In the following we refer to the method where such an 
approximation to the Jacobian is applied as the reduced Newton-Raphson (RNR) method. Only a 
fiuther simplification where in the computation of aK(h)/ahi isoparameteric elements are replaced by 
rectilinear ones and where partial differentiation with respect to hi is approximated by a finite- 
difference formula will notably simplify the code. However, this fiuther simplification, which is for 
certain problems quite acceptable, does not work satisfactorily in the present situation. The reason is 
that in the case of oscillation of rfree the variation in the stiffness matrix is not adequately modelled by 
rectilinear elements. The computation of atmN/ahi also requires differentiation of the directional 
cosines of the tangents to rke U Tout. Although this can be done analytically, we instead, in accordance 
with the loss of accuracy due to the simplification that only elements along the movable boundary are 
variable, chose the finite difference approximation with a step size of order ,/em, where E, is machine 
epsilon. 

It is well known that a switch from the Newton-Raphson method to Broyden’s method after the fist 
iteration step is often premature. Therefore the switch is made only after the length of the RNR method 
step, Ah, falls below a certain threshold. Of course, not all components of Ah are of the same 
magnitude. Usually the magnitude of quite a large number of the components is relatively small well 
before the length of the step falls below the threshold. Now, since Steps 3.i and 4.i can be computed for 
individual indices i, it seems natural to compute py) = -K-’(h(k))[aK(h(k))/ah,]u(~) at the kth iteration 
ste only for those indices i for which the ith component of Ah(k-‘) is not small enough and to set 
P!’~= pjk-l) for all other indices i. Since pjk) is multiplied from the left by aC au, it suffices in the 

whether Steps 3.i and 4.i are executed or the stationary approach is used is made via the following 
statement: 

implementation of the above quasi-stationary approach to store only (k/aU)pj I ). The decision as to 

then use the stationary ap roach else execute Steps 3i and 4i. Here h ,  and s,, are two user-supplied 
parameters and a(lAhjk- ’1) is the standard deviation of the data (IAhjk-”l : i - 1,. . . , s}. In this 
paper the RNR method with strategy (36) is referred to as the quasi-stationary (QS) method. It is 
evident that the update of the Jacobian by the QS meethod has the bounded deterioration property” 
and thus according to the theory the QS method is at least locally linear convergent. Note that 
h,, < 0 results in the RNR method while s, = h,, = co gives stationary iteration. As we shall 
see, the most effective strategy is a combination of the QS and Broyden methods where the switch 
from the QS method to Broyden’s method is made after the first few QS steps. It should be noted that 
the QS method favours implementation on computers with parallel architecture. 

P 

NUMERICAL EXAMPLES 

All examples presented in h s  paper were computed using a Pentium PC, 90 MHz. The programme is 
coded in Microsoft FORTRAN Power Station using double-precision airthmetic with machine epsilon 
E, or order 10-l6. 

As a test problem we chose the flow over a high-overtlow WES-shaped spillway with parameters’ 
L1 = 7.5, L2 = 1.615 and HO =4.13. The question of whether the point of tangency along the lower 
nappe is introduced or not is insignificant in the study of the convergence behaviour and thus the point 
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of tangency is not introduced for the moment. We begin with the study of the interior h-iteration level. 
As already remarked, the h-iteration converges only for a certain range of given data Q. It was found 
that for a coarse mesh discretization the empirical value of the discharge coefficient results in 
convergent h-iteration. In retrospect this greatly facilitates the computation, since any possible failure 
of the h-iteration could be attributed to both poor initial position of The and value of Q. In the case of 
a fine mesh discretization the empirical value of Q is insufficiently accurate as an initial value of Q. For 
this reason the discussion of the h-convergence is first focused on a computation where a coarse mesh 
discretization is used. In particular, mesh M2410107 (see Table I) was selected as a representative coarse 
mesh. For a visual comparison between coarse and fine meshes see Figures 2 and 3. Numerical results 
for three total energy levels He = 0.5Hd, Hd and 1 .33Hd are considered. However, the hconvergence 
behaviour does not notably depend upon He and thus, in testing the h-convergence only results for 
He = Hd are presented. The corresponding empirical value of the discharge coefficient is Qe = 0.7 1 1. It 
turned out that for the chosen mesh discretization Qe coincides with the critical value, i.e. 
@(Tfrec(Qe))=O, and thus the chosen mesh discretization is ideal for testing the variable domain 
method. The initial position of r k  is determined as explained in the definition of Q and is shown in 
Figure 2. Here point D’ of the initial position of T k  above D is lowered by 0.02. Although the 
displacement of D’ is minute, it is necessary for convergence of the method. The parameters of the QS 
method were set to h ,  = 0.001 and s,, = 2.0. The question of at which iteration step the switch 
from the QS method to Broyden’s method should be made was studied and the results are summarized 
in Table 11. Here the stopping criterion is set to &h := max(llAh(k)Ilw, Ilf(h(k)>lw) < 10-p,p = 10, 
where Il.llw is the infinity norm, i.e. IIAh(k)llw = max,IAhjk)I. For practical computations it suffices to 
set p = 7. However, in order to be sure that the implementation of the method is free of errors, the 
overlaid stopping criterion p = 10 was used in testing the h-iteration code. As can be seen, a switch 
from the QS method to Broyden’s method before step 4 is premature and results in the collapse of the 
mesh. The longer the switch is postponed, the more robust but also more costly is the method. 

Convergence histog- of the RNR method, the QS method and the combined QS and Broyden 
method with the switch at the fifth iteration step are shown in Figure 4. Note that the RNR and QS 
methods exhibit quadratic convergence between steps 4 and 8. The reduction of the convergence rate to 
linear after steps 8 is attributed to the fact that in the finite difference approximation of i3&,,,/i3hi a fixed 
step size is used. We report that the computational cost of the RNR method is higher by a factor of 1-5 
than that of the combined QS and Broyden method with the switch after the fifth step. An alternative to 
switching at a fixed iteration step is to switch at the step where llAh(k)llw drops below a certain 
threshold. The efficacy of the method based upon switching at a fixed iteration step obviously depends 

Figure 3. Finite element discrPtization for mesh Mmm320. Tm. corresponds to the final position of the critical flow calculation for 
He = Hd 
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Table 11. Here kB is the step at which the switch from the 
QS method to Broyden’s method is made, k, is the 
number of iteration steps required for the termination 
criterion to be satisfied, CPU is the required computa- 
tional time normalized to the case ke = 4 and n is the 
number of performed steps (Steps 3.i and 4.4 of the QS 
method, as suggested by (39), at the iteration step k = kB. 
Divergence of the h-iteration is denoted by an asterisk 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  

* 
* 

19 
17 
14 
11 
11 
11 
11 
11 

* 

* 
1 

1.05 1 
1.062 
1-080 
1.174 
1.253 
1.347 
1.434 

37 
23 
33 
21 
17 
14 
12 
5 
4 
3 
4 

upon the quality of the initial position of rfie. Since during the Q-iteration the quality of the initial 
position of r h  varies, switching based on the value of IIAh(k)llbO was used on all subsequent 
computations presented in this paper. For a typical threshold value we suggest Note that in 
Figure 4 the chosen threshold value corresponds to switching at the eighth iteration step. In Figures 
5(a) and 5(b) we present convergence histograms of the combined QS and Broyden method. Results 
for four different mesh gradings are given. In all cases the initial position of T h  is just the final 
position of Th of the coarse mesh M2410107 computation, while Q has values of 0.71128331, 
0.71031604, 0.7101 1478 and 0.7101 1889 for meshes M2430110, w830220, M6860320 and M10880320 
respectively. It will be shown later that these values of Q are just critical values of the discharge 
coefficient for particular mesh discretizations. As can be seen, the convergence rate deteriorates with 
increasing mesh refinement. This can be attributed to the fact that with increasing mesh refinement the 
assumption in the computation of the Jacobian that only elements along T k ,  rin and rout are variable 
becomes less and less accurate; compare the mesh discretizations in Figures 2 and 3. Notable is the 
convergence behaviour for mesh M10880320. In this case not only is the mesh discretization very fine 
but also the chosen initial position of Th leads to a final position of T k  which is fairly wavy and 

-1 
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-7  
-8  
-9  
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-11 

2 4 6 8 10 12 14 16 

Figure 4. Logarithmic plots of llAh(’)Ilm versus iteration counter k for RNR method (O), QS method (W) and combined QS and 
Broyden method (A) 
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these together result in some oscillations in the convergence. In particular, @(rk), which measures 
how wavy rhe is, has a value of about 73". Note that in the case of wavy Th the approximation that 
only elements along the variable boundary are movable is even less accurate. It was also found that 
using a very fine mesh discretization (n3 = 80), different initial positions of T h  sometimes result in 
two different final positions. In other words, at a fixed value of Q, multiple solutions to the free 
boundary value problem exist. Though this is quite awkward, these final positions fortunately have 
different characters, one being far less wavy than the other, and since a no-wave solution is sought, the 
former is proclaimed as the solution. This of course raises the question of how the initial position of 
rfrte should be chosen to obtain the solution with no-wave character. The answer lies in the refinement 
process where the initial position of rfrce is updated by replacing it by the h a 1  position of Th. In 
particular, if the h-iteration with mesh M10880320 is initiated with the final position obtained by the 
critical flow calculation for mesh M7880320, a solution with a minute violation @(I-,) = 0-466" of the 
no-wuve condition is achieved. In the latter case the h-convergence is much faster, since it takes only 
four iteration steps to achieve IIAhck)(Im < lo-''; see Figure 6, where logarithmic plots of IIAhck)II, 
versus iteration counter k are given for four different initial values of Q. As can be seen, in all cases the 
convergence is very satisfactory. We note that owing to the fine mesh discretization the convergence 
radius of the h-iteration with respect to Q is rather narrow, less than lo-'. However, since the critical 
value of Q obtained with mesh M7880320 is a good initial value to start off, the narrowness of the 
convergence radius of Q will not be a problem. It is concluded from the above discussion that near a 
critical value of Q the hconvergence is stable enough to decide that in the case of an unknown value of 

(a) 

(b) 
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Figure 5 .  Logarithmic plots of (a) IIAh(')lloc and (b) I(f(h('))I1, versus iteration counter k for combined QS and Bmyden method. 
The switch from the QS method to Broydenk method is made after ~ ~ A h ( k ) ~ ~ w  falls below The meshes are M2430110 (0). 

h830220 (V, &60320 and M10880320 (A) 
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Figure 6. Dependence of hconvergence rate upon initial value of Q. The mesh is M10880320 and the initial position of 
coincides with the final position obtained by the critical flow computation for mesh M7880320. Q=0.71011889 (a), 0.7101 18 

(T), 0.7101 15 (m) and 0.710123 (A) 

Qc and a relatively good guess of the initial position of rke the h-convergence is worth pursuing only 
if ((Ah(k)((oo, apart from a few allowed exceptional jumps, decreases monotonically. In the case of 
jumps of IIAh(')IIcro the decision as to whether the iteration should be continued or not is facilitated by 
monitoring the behaviour of llf(h(k))lloo; see Figures 5(a) and 50). 

We now turn to the numerical study of the Q-iteration where the minimum of a function O(r,(Q)) 
is sought. As soon as an initial value of Q for which the b-problem has a solution has been found, the 
computation of O(rhe(Q)) is straightforward. For a new value of Q the associated h-problem is 
initialized by the final position of The of the old value of Q. It turned out in our numerical experiments 
that in this way the defined O(rh,(Q)) is a single-valued function whose definition domain contains 
some interval with the initial value of Q as an interior point. The topological property of the domain is 
veq  important since it allows minimization of @(r,(Q)) as the minimization of a function of a 
continuously variable Q. However, remember that in the above definition of cb(T,(Q)) an important 
role is played by the initial value of the discharge coefficient, Po), as well as the initial position of the 
free boundary, rg!. Explicitly denoting the dependence upon them, we write (rhe(Q); Po), r(O) ). Of 
course, O also depends upon the mesh discretization and thus the full notation is (rk(Q); Q(Tfi2, 
M,,l,,2,,l,,4n5). The corresponding expanded notations of Qc and the final position of rk are 
QC(Po), ~ 2 ,  Mn,,,2,,3,,4n5) and rfree(Mnln2nln4n,). However, on occasions where no ambiguity arises, the 
s h ~ l f i e d  notations Wfree(Q))t Qc or Qc(Mnln2n,n4n5 ) and rh(Qc) are used. The fkst step in the 
minimization of O(rk(Q)) is bracketing of the minima. Since the end points of the interval are not 
known in advance, this step is very important. How large the first step AQ in the bracketing is 
dependent upon the mesh discretization. For a fine mesh a suggested value is while for a come 
mesh AQ could be of order lop3. Bracketing is done by stepping downhill until the bracketing triple is 
found. Here the step size is computed either by magnification of the step size by a constant factor or by 
using parabolic interpolation." In the case where for a proposed value of Q the h-iteration fails to 
converge, i.e. Q is outside the definition domain, the step size is halved until the h-iteration converges. 
Here a failure of the h-iteration is manifested by either collapsing of the mesh or oscillating behaviour 
of llAh(k)llm. As soon as the bracketing triple has been found, minimization is proceeds by Brent's 
method'* which utilizes inverse parabolic interpolation. 

The stopping criterion for the Q-iteration depends upon the stopping criterion for the h-iteration, 
which is set to &h < lo-'. Assuming that the upstream part of is a straight line, a single vertical 
displacement Ay of a free boundary node in the upstream part of Tm. changes cb by 
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Estimating (40), it follows that for L1 = 7.5 and lAyl < E ~ ,  

180" 
A@ < -n3ch. 

n 
For n3 < 80 and &h < 0 thus has at least three significant decimal places. In the general case 
the h-displacements might be spread all along rhe and also might have several crests and 
troughs. However, since in the final stage of the h-iteration the displacements are localized to the wavy 
part of rfreer the stopping criteron &h < 1 0 - ~  again guarantees that for the no-wave solution has at 
least three significant decimal places. Now, assuming that @(rhe(Q)) is a smooth function, it follows 
that near Qc, 

Estimating d20(r,(Q))/d@ at Qc for particular numerical results (see Figures 7(ak7(c)), we found 
that the second derivative of Q at Qc is of the order 10l2. Hence it follows from (41) and (42) that for 
&h < lo-' and n3 < 80 the appropriate stopping criterion on AQ is 

On the other hand, the lower bound of @(r,(Q)) is known and thus the Q-iteration is instantly 
terminated if @(Th(Q)) = 0 within machine epsilon precision. 

Convergence histograms for the Q-iteration are shown in Figures 7(a)-7(c). Here @(r,(Q)) against 
Q is plotted as a smooth interpolating function which joins values of @(r,(Q)) computed at steps of 
the Q-iteration. Numbers below the graph indicate at which iteration step a particular value of 
@(rhe(Q)) obtained. In the final stage of the Q-iteration the values of O(r,(Q)) are so clustered 
together that only the last iteration step is explicitly numbered. Each figure also shows the initial value 
of Q, while the initial positions of are Th(M241010,) for Figures 7(a) and 7@) and 
rfrec(M7880320) for Figure 7(c). Note in Figure 7 how the bracketing is done; for example, in Figure 
7(c) the bracketing triple consists of values of Q at steps 4, 5 and 6. Observe that in this particular case 
the step size of the fourth Q-iteration step is reduced, since the originally proposed Q falls outside the 
definition domain of @(rh(Q)). 

As already noted, the Q-iteration is terminated immediately if @(rh(Q))=O. In this case the 
termination criterion on SQ is not satisfied and thus the question of whether such a value of Q is unique 
arises. Investigating the neighbourhood of Q for which @(rh(Q))=O, we found that for certain 
come mesh discretizations the length of the interval included in the inverse image of @(r&(Q)) = 0 
is several orders greater than the stopping criterion on AQ. In particular, we studied meshes M2405105r 
M2410107 and M2420110 and energy levels He = 0-5Hd, Hd and 1.33Hd; see Table 111. As can be seen, the 
length of the maximal interval included in @-'(O) contracts notably in the refinement from M2410107 to 
M2420110. With further refinements the contraction of the interval continues such that for values of the 
mesh parameter n3 > 30 the uniqueness of the solution of O(rfi=(Q)) = 0 is guaranteed within the 
precision of @. A solution to @(r,(Q)) = 0 does not exist for all possible mesh discretizations. In 
these cases Brent's algorithm in general gives only the local minimum, which is according to our 
numerical experience unique and thus the global one. 

For the design analysis of spillway flows the knowledge of Qc within a precision of three decimal 
places is more than sufficient. However, from the viewpoint of the finite element discretization the 
results are proven to be correct only if their consistency can be shown by mesh refinement. The 
minimization of O(r,(Q)) was subjected to such study and the results are summarized in Table n! 
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Figure 7. Convergence histograms of Q-iteration level for meshes (a) W4830220, (b) %M)320 (c) M10880320. Total CPU times are 
5, 29 and 21 min for meshes h830220 ,  M6860320 and M10880320 respectively 

Table 111. Study of the inverse image of U)(rk(Q)) = O  for meshes M2405105, M2410107 and M2420110 by means of 
finding a maximal interval [Q-, Q-] included in W'(0). Qe is the empirical value of the discharge coefficient. 

For He = 1.33 and meshes M2410107 and M2420110 the inverse image is the empty set 

M2405105 M24lOI 07 M2420110 

He Qmin Q I W  Qmin Q- QIIlill Q- Qe 

0*5Hd 0.2277901 0.2306272 0.2266 132 0.23038 10 0.2284540 0.2284867 0.226 
Hd 0.7069500 0.7152800 0.7098814 0.7120455 0.7113255 0.7114037 0.711 
1.33Hd 1.1341547 1.1462406 1.121 
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According to our numerical experiments, the no-wave condition is usually violated only along the 
upstream part of T b  and thus the question of whether the observed upstream waves have any 
meaninghl interpretation was studied by varying n3. Of course, with changing n3 the structure of the 
mesh varies, so in order to have meshes of about the same structure, other mesh parameters were also 
varied. For He = 0.5Hd the finest mesh used is M4840220, since for a greater value of nl the elements 
along the spillway crest are so thin that the Jacobian of the isoparametric transformation becomes ill- 
conditioned. In all cases except He =&, n3 = 80 and nl > 8 the final positions of mesh M2410107 
serve as satisfactory initial guesses of rb, i.e. r 2  = rk(M2410107). Moreover, the aforementioned 
dependence of r,(Qc) upon I-L was found only for He = Hd, n3 = 80 and nl 2 6. The Q-iteration 
for meshes hfn,880320, n l=6 ,  7 and 8, started with FL = ~frec(M24,0,0,) and @0)=0.71011 
converges to wavy solutions. In particular, cD(r,(Qc)) has values of 157", 33" and 109" at 
Qc =0~71005130,0~71009907 and 0.71007967 for n l = 6 ,  7 and 8. The variation in Qc is here of such 
magnitude that for meshes M7880320 and M~~~~~~~ even initial values Po) = Q ~ ( M ~ ~ ~ ~ ~ ~ ~ )  and 
Qc(M7880320) and initial positions rz = rfree(hf6880320) and r b ~ 7 8 8 0 3 2 0 )  do not result in 
convergent Q-iteration. However, taking Po) = 0.71013 and rE = rfree(M2410107), no-wave solutions 
for &880320 and M7880320 with Qc = 0.71012229 and 0.7101 1814 result. It is interesting to find that at 
r(0) fra - - r freC(hf24~0~07) the Q-iteration converges to wavy solutions even if Po) has the above no-wave 
values of Qc. For nl  = 8, 9 and 10, searching for Po' for which rge = ~,(M2, , , , , , )  gives no-wave 
solutions was too expensive and thus the final position of the no-wave solution of M7880320 was used 
for rz together with the best available value of Po'. In this way no-wave solutions were found as 
reported in Table n! Note here how cD(r,(Q)) diminishes with increasing n l .  As can be seen in Table 
W, Qc is most affected by a change in n4. This is not surprising, since an increment of n4 introduces a 
greater number of new elements per unit length in the x-direction. n2 affects the mesh within a region 
which is not of primal importance to the free surface computation and thus n2 is restricted to values of 
n2 = 4, 8 and 12. On the other hand, nS influences the mesh discretization of a region which is very 
important. However, it was found that Qc is not particularly sensitive to nS and hence only values of 
n5 = 10 and 20 are considered. Summing up the results in Table W, we see that with increasing mesh 

Table IV Values of Qc for different mesh discretization 

He = 0.5H,j He = H d  He= 1.33Hd 

Mesh QC @O @ QC @O @ QC @O 4 

M243110 0.22835670 51.480" 0.000" 0.71 128331 57.810" 3.960" 1.14077214 62.300" 7.420" 
M2430210 0.22782232 51.470" 0.000" 0.71044047 57.816" 3,989" 1.13974275 62.326" 7,458" 
M2830210 0.22782000 51.468" 0.000" 0.71035172 57.613" 3.805" 1.13952210 62.175" 7.309" 
w 8 3 0 2 1 0  0.22783583 51449" 0.000" 0.71031824 53.855" 3.805" 1.13949093 55.659" 0.694" 
M4830220 0.22783572 51.667" 0.000" 0.71031604 54,002" 0.OOO" 1.13946149 55.808" 0.700" 
hi4840220 0.22783000 51.666" 0.000" 0.71033123 54.889" 0,877" 1.13947437 56.109" 1.842" 
M6840220 0.71035623 54.153" 0.130" 1.13948197 55.303" 0.104" 
MI3840220 0.71036205 54.059" 0.021" 1.13948932 55.165" 0.000" 
M8840320 0.71011434 54.038" 0.016" 1.13919181 55.153" 0.000" 
w 8 6 0 3 2 0  0.71011478 54.022" 1~OOO" 1,13919601 55.146" 0.000" 
w 8 8 0 3 2 0  0.71012229 57.218" 3.196" 1.13920026 55.152" 0.007" 
M7880320 0.71011814 55.403" 1.380" 1.13919876 55.152" 0.000" 
M8880320 0.71011740 55.067" 1.045" 1.13919781 55.152" 0.000" 
M9880320 0.71011814 54.731" 0.697" 1.13919721 55.154" 0.000" 
MI0880320 0.71011889 54.487" 0.466" 1.13919701 55.155" 0.OOO" 
Mlo8804zo 0.71001945 54.486" 0.466" 1.13907554 55.154" 0.OOO" 

101 280420 0~71001013 54.020" 0.467" 1.13905070 55.154" O.Oo0" 
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refinement Qc converges to certain definite values, thus proving the consistency of the results, For a 
fine mesh discretization, assessing the oscillation of r,,(Qc) by means of plotting rh is illusive, 
since the oscillation of rh is within the thickness of the plotting line. Therefore the oscillation of 
Tfm(Qc) is represented by graphs of discrete curvature values at free boundary nodal points; see 
Figures 8(a) and 8@). Here the abscissa coincides with the x-axis of the computational domain while 
the Galinate gives the discrete curvature in degrees. The figures show very clearly that the wavelength 
of the oscillation is proportional to the node spacing. Note that oscillation of the discrete curvature 
implies oscillation of rfree only if the sign of the discrete curvature alternates. With refinement form 
M6880320 to M8880320 the most oscillating part of Tfiee shifts from x = 4  to 2. This shows very 
convincingly that the oscillation of rke is only due to the discretization and does not have any intrinsic 
meaning. In discussing Q-iteration, we mainly restricted ourselves to He = Hd. The other two cases are 
computationally simpler: no multiple solutions were found, He = 0.5Hd always results in zero violation 
of the negative curvature condition, while He = 1-33Hd is a showcase of how mesh refinement damps 
out the oscillation of The. Comparison of Qe and Qc is very promising. For He=0.5Hd, Hd and 
1.33Hd the error is less than 1%, 0.1% and 1.7% respectively. 

So far we have been concerned only with numerical aspects of the work. On the other hand, the 
computation of critical flow is a problem of practical interest and the remainder of the paper is devoted 
to this aspect. In the design of a spillway crest the avoidance of negative pressures on the crest is one of 
the most important objectives and thus theoretical prediction of the pressure comes as a great help. 
Potential theory has severe limitations: it cannot model separation and turbulence, which are both very 
llkely to develop behind curvature discontinuities of the crest. However, after the highest point of the 
crest no separation and further development of turbulence are expected and here the potential model 
should have predictive power. This is confirmed in Figure 9, which gives a comparison between 

(4 

0 . 2 5 1  

--0 . 5  

- 0 . 7 5  
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Figure 8. Discrete curvature of r h  in degrees: (a) (M6880320) and @) (M8880320) 
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Figure 9. Comparison of pressure along crest. Curves with A, w and V represent experimental results for He = 0.5Hd. Hd and 
1.3 3 Hd respectively. Corresponding numerical results are given by simple c w e s  which lie below experimental results 
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Figure 10. Computed pressure along crest for WES high-overflow spillways with point of tangency included: He = 0.5H.j (A), 
Hd (M) and 1.33Hd (V). Marked points now denote computed free boundary nodes. Since after 5 = 0 the nodes come too close 

to each other, only half the nodes after 5 = 0 are marked 

Figure 1 1. Comparison of experimental and computed positions of Tmc. Experimental data for H, = O.5Hdl Hd and 1.33H.j are 
marked with A, and V respectively. Computed positions are given by simple curves 

theoretical and experimental" results for the pressure distribution along the crest. Here the abscissa is 
the local crest co-ordinate (, where the highest point of the crest comes at < = 0. The comparison is to 
some degree hampered by the fact that in the available experimental data approaching velocity head is 
neglected. If it were included, experimental data would be shifted downwards by a small amount. Even 
after this correction, however, discrepancies, especially in the case of He = 1.33Hd, still remain. The 
more pronounced discrepancies at larger heads are attributed to the fact that separation and turbulence 
then becomes more important. Note that the higher values of the experimental results are in agreement 
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with the theory of boundary layer separation.” Nevertheless, it is remarkable how the numerical results 
follow the experimental data. The present numerical results come close to the results obtained by the 
Dressler approximation,” which accounts for bed curvature in the shallow flow equations. However, in 
the particular example, the Dressler approximation is of a more restrictive nature since it is valid only 
for ( 2 0.1. The influence of the shape of the spillway crest upon the pressure distribution is 
demonstrated in Figure 10, where the point of tangency at ( = 1.096 is introduced. How this affects the 
flow depends upon He. For He = 0.5Hd the pressure is notably influenced upon upstream of ( = 1-0, 
while for He = 1 .33Hd it is affected up to ( = 0.5. This is attributed to the greater change in the position 
of T* due to the greater bulk of the fluid for higher values of He. According to this argument, we 
conclude that correct positioning of rout is more important for larger values of He. A comparison 
between computed and measured positions of T k  is given in Figure 1 1. Meshes &&10220, M101280420 

and M101280420 were used for He=0.5Hd, & and 1.33Hd. As can be seen, the comparison is quite 
satisfactory, especially for He = 0.5Hd. We note that our computed positions come much closer than 
the positions fiorn Reference 9. 

CONCLUSIONS 

A numerical computation of the critical flow over a spillway by minimization of the oscillation of the 
free boundary has been presented. The method has two iteration levels. It has been shown that with 
increasing mesh refinement the Qconvergence radius of the inner iteration rapidly shnnks. This 
suggests that in the limit of mesh discretization the solution to the inner iteration exists only for a 
unique value of Q which comes as a critical value of the discharge coefficient. It is concluded that the 
present method is capable of tracing the shrinkage of the Q-convergence radius and hence that it 
converges to the critical value of the discharge coefficient. 
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